Re: Letter to the editor about "The vitamin B12 analog cobinamide is an effective hydrogen sulfide antidote in a lethal rabbit model".
نویسنده
چکیده
BACKGROUND AND PURPOSE Hydrogen sulfide (H2S) is a highly toxic gas for which no effective antidotes exist. It acts, at least in part, by binding to cytochrome c oxidase, causing cellular asphyxiation and anoxia. We investigated the effects of three different ligand forms of cobinamide, a vitamin B12 analog, to reverse sulfide (NaHS) toxicity. METHODS New Zealand white rabbits received a continuous intravenous (IV) infusion of NaHS (3 mg/min) until expiration or a maximum 270 mg dose. Animals received six different treatments, administered at the time when they developed signs of severe toxicity: Group 1-saline (placebo group, N = 9); Group 2--IV hydroxocobalamin (N = 7); Group 3--IV aquohydroxocobinamide (N = 6); Group 4--IV sulfitocobinamide (N = 6); Group 5--intramuscular (IM) sulfitocobinamide (N = 6); and Group 6-IM dinitrocobinamide (N = 8). Blood was sampled intermittently, and systemic blood pressure and deoxygenated and oxygenated hemoglobin were measured continuously in peripheral muscle and over the brain region; the latter were measured by diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS). RESULTS Compared with the saline controls, all cobinamide derivatives significantly increased survival time and the amount of NaHS that was tolerated. Aquohydroxocobinamide was most effective (261.5 ± 2.4 mg NaHS tolerated vs. 93.8 ± 6.2 mg in controls, p < 0.0001). Dinitrocobinamide was more effective than sulfitocobinamide. Hydroxocobalamin was not significantly more effective than the saline control. CONCLUSIONS Cobinamide is an effective agent for inhibiting lethal sulfide exposure in this rabbit model. Further studies are needed to determine the optimal dose and form of cobinamide and route of administration.
منابع مشابه
Hydrogen Sulfide—Mechanisms of Toxicity and Development of an Antidote
Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induce...
متن کاملThe combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning.
CONTEXT Cyanide is a component of smoke in residential and industrial fires, and accidental exposure to cyanide occurs in a variety of industries. Moreover, cyanide has the potential to be used by terrorists, particularly in a closed space such as an airport or train station. Current therapies for cyanide poisoning must be given by intravenous administration, limiting their use in treating mass...
متن کاملIntramuscular cobinamide sulfite in a rabbit model of sublethal cyanide toxicity.
STUDY OBJECTIVE Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B(12)) analog with an extraordinaril...
متن کاملRadioimmunoassay that measures serum vitamin B12.
AIMS To develop a specific radioimmunoassay for the routine determination of serum vitamin B12. METHODS Antisera were raised in rabbits by immunisation with the monocarboxylic acid derivative of cyanocobalamin coupled to human serum albumin. Antibody titres and affinities were determined and the antiserum giving the highest binding affinity constant, Ka, was used to develop the assay protocol...
متن کاملEndogenous H2S in hemorrhagic shock: innocent bystander or central player?
The role of the gaseous mediator hydrogen sulfide (H2S) in hemorrhagic shock is still a matter of debate. This debate is emphasized by the fact that available literature data on blood and tissue H2S concentrations vary by three orders of magnitude, both under physiological conditions as well as during stress states. Therefore, in a rat model of unresuscitated, lethal hemorrhagic shock, Van de L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical toxicology
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2014